
The Australian National University
Second Semester Examination – November 2005

COMP2310
Concurrent and Distributed Systems

Study period: 15 minutes
Time allowed: 3 hours

Total marks: 100
Permitted materials: None

Questions are

not

 equally weighted – sizes of answer boxes do

not

necessarily relate to the number of marks given for this question.

All your answers must be written in the boxes provided in this booklet. You will be provided with scrap paper
for working, but only those answers written in this booklet will be marked. Do not remove this booklet from
the examination room. There is additional space at the end of the booklet in case the boxes provided are insuf-
ficient. Label any answer you write at the end of the booklet with the number of the question it refers to.

Greater marks will be awarded for answers that are simple, short and concrete than for answers of a sketchy
and rambling nature. Marks will be lost for giving information that is irrelevant to a question.

The following are for use by the examiners

Name (family name first):

Student number:

Q1 mark Q2 mark Q3 mark Q4 mark Q5 mark Q6 mark Total mark

Student number:..

COMP2310 Second Semester Exam 2005 Page 2 of 28

1. [10 marks] General Concurrency

(a) [4 marks] Give two advantages and two disadvantages associated with programming a
concurrent application to run on a shared-memory multiprocessor environment (com-
pared with a distributed memory message-passing environment).

Student number:..

COMP2310 Second Semester Exam 2005 Page 3 of 28

(b) [2 marks] What basic facilities are expected to be provided by a concurrent programming
language? What more advanced programming constructs might be provided? Give at
least three.

(c) [4 marks] In the context of a concurrent computer program what is an invariant? Give a
definition or a meaningful example. Explain why some invariants which are crucial for the
correctness of a concurrent program can be hard to prove. Illustrate your answer with an
example.

Student number:..

COMP2310 Second Semester Exam 2005 Page 4 of 28

2. [25 marks] Synchronization

(a) [5 marks] Assume that there are three threads,

X

,

Y

, and

Z

, that repeatedly and continu-
ously print “

X

”, “

Y

”, and “

Z

” respectively. Use semaphores to coordinate the printing such
that the number of “

X

”s printed is always less than or equal to the sum of “

Y

”s and “

Z

”s
printed.

Student number:..

COMP2310 Second Semester Exam 2005 Page 5 of 28

(b) [5 marks] Using a shared variable of type integer and two binary semaphores construct a
general counting semaphore.

Student number:..

COMP2310 Second Semester Exam 2005 Page 6 of 28

(c) [6 marks] Consider the following C code (very carefully!):

#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
int main(void){

 int array1[2];
 int *array2;
 int status;

 array2 = (int*)malloc(2*sizeof(int));

 array1[0]=10;
 array1[1]=11;
 array2[0]=20;
 array2[1]=21;

 printf(“Initial addresses of arrays: %p %p\n“, array1, array2);

 if (fork() == 0){

 printf(“1st array1 is at %p: and holds: %d %d\n”,array1,array1[0],array1[1]);
 printf(“1st array2 is at %p: and holds: %d %d\n”,array2,array2[0],array2[1]);
 array1[1]=31;
 array2[1]=41;

 } else {

 printf(“2nd array1 is at %p: and holds: %d %d\n”,array1,array1[0],array1[1]);
 printf(“2nd array2 is at %p: and holds: %d %d\n”,array2,array2[0],array2[1]);
 wait(&status);
 printf(“3rd array1 is at %p: and holds: %d %d\n”,array1,array1[0],array1[1]);
 printf(“3rd array2 is at %p: and holds: %d %d\n”,array2,array2[0],array2[1]);

 }
 return 0;
}

The code compiles and runs without problems. The initial part of the output on the termi-
nal reads (

%p

 is a pointer type printing out the address in hex-code):

Initial addresses of arrays: 0x3000 0x5000

(question continued on next page)

Student number:..

COMP2310 Second Semester Exam 2005 Page 7 of 28

Detail the remaining output as produced by the rest of the code. If you are unable to spec-
ify the output exactly, state why. Explain what you assume in your answer about the
underlying runtime system.

Student number:..

COMP2310 Second Semester Exam 2005 Page 8 of 28

(d) [9 marks] The following questions concern monitors in concurrent systems.

(i) [5 marks] Specify a monitor in its most generic form and give one specific example of its
usage.

Student number:..

COMP2310 Second Semester Exam 2005 Page 9 of 28

(ii) [4 marks] Monitors are considered a mixture of high-level and low-level programming
constructs. Explain which parts of a monitor these claims are referring to, and why.

Student number:..

COMP2310 Second Semester Exam 2005 Page 10 of 28

3. [18 marks] Message Passing

(a) [5 marks] What is the “requeue” facility (as in Ada95) and when is it essential? Give an
example of a concurrent system which requires a requeue facility.

Student number:..

COMP2310 Second Semester Exam 2005 Page 11 of 28

(b) [8 marks] Consider three processes

p1

,

p2

,

p3

, that will communicate with each other
using send and receive message passing calls. The following series of events are supposed
to take place concurrently:

 Process p1 | Process p2 | Process p3
 --
 A | D | G
 receivefrom (p3) | sendto (p1) | receivefrom (p2)
 B | E | H
 receivefrom (p2) | sendto (p3) | sendto (p1)
 C | F | I

(i) [2 marks] Detail a possible time-line of events assuming that the message passing facil-
ity is

asynchronous

(indicate the events

A

-

I

, and the messages by send-events, receive-
events, and connecting arrows).

(ii) [2 marks] Detail a possible time-line of events assuming that the message passing facil-
ity is

synchronous

 (indicate the events

A

-

I

, and the messages by send-events, receive-
events, and connecting arrows).

t

p3

p1

p2

t

p3

p1

p2

Student number:..

COMP2310 Second Semester Exam 2005 Page 12 of 28

(iii) [4 marks] Now consider that all three processes repeat the events given above in infi-
nite loops and there is an underlying

asynchronous

 communication system:

 Process p1 | Process p2 | Process p3
 --
 loop | loop | loop
 A | D | G
 receivefrom (p3) | sendto (p1) | receivefrom (p2)
 B | E | H
 receivefrom (p2) | sendto (p3) | sendto (p1)
 C | F | I
 end loop | end loop | end loop

Detail what will happen to the progress of the two remaining processes if one of the pro-
cesses dies unexpectedly (or is explicitly terminated). Differentiate the cases involving ter-
mination of processes

p1

,

p2

, or

p3

 (i.e. only one process will terminate in every test-run).
Explain what assumptions about the asynchronous communication system you made in
your answer.

Student number:..

COMP2310 Second Semester Exam 2005 Page 13 of 28

(c) [5 marks] Assume two completely different computer architectures (in terms of proces-
sors, languages, operating systems, etc.) which are connected via a common communica-
tion system. What aspects do you need to consider in the design of a working and reliable
synchronous communication protocol (formats, synchronization, buffers, …) between
these two computers? Explain what (if any) assumptions you make about the communica-
tion system itself.

Student number:..

COMP2310 Second Semester Exam 2005 Page 14 of 28

4. [6 marks] Scheduling

(a) [6 marks] You are required to design a CPU-scheduler which minimizes the maximal turn-
around time of a task set without deadlines.

(i) [4 marks] Describe your chosen implementation in the case of unknown computation
times and give reasons for your decision(s).

(ii) [2 marks] Now assume that every task provides with every scheduling request the
expected amount of CPU time which this task will need. Is it useful to change the sched-
uler and to incorporate this new information? (You still need to minimize the maximal
turnaround time.) If so: in which ways, if not: why not?

Student number:..

COMP2310 Second Semester Exam 2005 Page 15 of 28

5. [18 marks] Safety and Liveness

(a) [5 marks] Name and describe in reasonable detail five (!) ways to ensure that a concurrent
system is safe (from deadlocks).

Student number:..

COMP2310 Second Semester Exam 2005 Page 16 of 28

(b) [13 marks] The following Ada program (page 18) is syntactically correct and will compile
without warnings. It produces output on the terminal with every successful

Write

 or

Read

 call on the protected object

Shared_Object

.

(i) [1 mark] How many tasks do you find in this code? (Do not forget to count the ‘main’
program.) Give their names.

(ii) [2 marks] Does the set of tasks constitute a deterministic system (in the sense that it
produces exactly the same output with every test run)? Give reasons for your answer.
Does your answer depend on assumptions about the underlying hardware or run-time
environment? If so, what are those assumptions?

Student number:..

COMP2310 Second Semester Exam 2005 Page 17 of 28

(iii) [10 marks] Will/might the set of tasks

terminate

,

deadlock

,

livelock

, or

run indefi-
nitely

? Detail your answer with a calling sequence which leads to this situation. What out-
put(s) do you expect to see on the terminal? (If you declared the system non-deterministic
in the question above, you might need to come up with multiple possibilities and you also
need to provide multiple calling sequences – one for each principal case.)

Student number:..

COMP2310 Second Semester Exam 2005 Page 18 of 28

with Ada.Text_IO; use Ada.Text_IO;

procedure Communicating_Processes is

 task Producer_Client;
 task Consumer_Client;

 task Producer is
 entry Available;
 entry Do_Something;
 end Producer;

 task Consumer is
 entry Available;
 entry Do_Something;
 end Consumer;

 protected Shared_Object is
 entry Write;
 entry Read;
 private
 Filled : Boolean := False;
 end Shared_Object;

 task body Producer_Client is
 begin
 Producer.Do_Something;
 end Producer_Client;

 task body Consumer_Client is
 begin
 Consumer.Do_Something;
 end Consumer_Client;

 task body Producer is
 begin
 loop
 select
 accept Available;
 or
 accept Do_Something do
 Shared_Object.Write;
 select
 Consumer.Available;
 Consumer.Do_Something;
 else
 null;
 end select;
 end Do_Something;
 or
 terminate;
 end select;
 end loop;
 end Producer;

 task body Consumer is
 begin
 loop
 select
 accept Available;
 or
 accept Do_Something do
 Shared_Object.Read;
 select
 Producer.Available;
 Producer.Do_Something;
 else
 null;
 end select;
 end Do_Something;
 or
 terminate;
 end select;
 end loop;
 end Consumer;

 protected body Shared_Object is

 entry Write when not Filled is
 begin
 Filled := True; Put ("Write");
 end Write;

 entry Read when Filled is
 begin
 Filled := False; Put ("Read");
 end Read;

 end Shared_Object;

begin
 null;
end Communicating_Processes;

Student number:..

COMP2310 Second Semester Exam 2005 Page 19 of 28

6. [23 marks] Distributed Systems

(a) [4 marks] This question addresses issues associated with virtual (logical) times in distrib-
uted systems. If you find two logical times

C(a)

 and

C(b)

 attached to events

a

 and

b

 in dif-
ferent processes, then what can you conclude if:

(i)

C(a)

 =

C(b)

(ii)

C(a)

 >

C(b)

Alternatively, if you know something about the relation between the events

a

 and

b in a
distributed system, what can you conclude about their logical times C(a) and C(b) if:

(iii) a happened concurrently with b

(iv) a always triggers b

Student number:..

COMP2310 Second Semester Exam 2005 Page 20 of 28

(b) [4 marks] Fetching a global snapshot in a distributed system can be hard to achieve.

(i) [2 marks] Can you suggest a distributed systems in which it is (relatively) easy to fetch
a global snapshot (i.e. you can do so within a constant and short timespan)? Describe such
a system.

(ii) [2 marks] If you do not have assurances like the ones you detailed in the first part of
this question, and you need to construct a distributed algorithm to implement a global
snapshot, what is the issue you need to take special care of? (Which potential danger can
render your global snapshot useless?) Give a precise answer.

Student number:..

COMP2310 Second Semester Exam 2005 Page 21 of 28

(c) [4 marks] Suggest a practical distributed system where you would implement a two-phase
locking transaction scheduler, and one practical distributed system where you would
implement an optimistic transaction scheduler. Give reasons for your decisions.

Student number:..

COMP2310 Second Semester Exam 2005 Page 22 of 28

(d) [11 marks] The following program (page 24) implements a distributed, symmetrical server
configuration. For the sake of simplicity it is assumed that all job identifiers are unique. A
client can address any of the servers in the group and will receive any results directly from
this server. The actual processing of a job is done by a free server in the group (not neces-
sarily the server communicating with the client). Client-job processing is done in the local
function Processing and the decision about the availability of a server is done locally in
the function Server_Available (both not detailed in the given implementation). All
servers run exactly the same program.

(i) [2 marks] Read the actual implementation below (which compiles warning-free and
implements a ring of identical servers). What is the communication effort (number of
entry-calls) per job? (Do not count requeues.)

(ii) [3 marks] Can this system deadlock? If you think that it can deadlock, describe the
chain of dependencies and suggest a way to resolve the problem. (No limitations here; you
can employ any construct/method you see fit.)

Student number:..

COMP2310 Second Semester Exam 2005 Page 23 of 28

(iii) [6 marks] How will this server cluster behave in high-load situations? Detail your
answer by addressing overall performance, reliability, scalability, and responsiveness.
Assume message delays and processing delays. Distinguish between the situation where
the clients call all of the servers equally, or when some servers are frequently preferred
over others. If you detect shortcomings, suggest improvements.

Student number:..

COMP2310 Second Semester Exam 2005 Page 24 of 28

procedure Processes_In_Ring is

 Ring_Size : constant Positive := 12;

 type Ring_Range is mod Ring_Size;
 type Job_Type is mod 42;
 type Ring_Packet is record
 Job, Job_Result : Job_Type;
 Done : Boolean;
 end record;

 task type Server is
 entry Set_Server_Id (Id : in Ring_Range);
 entry Job (New_Job : in Job_Type; Job_Result : out Job_Type);
 entry Forward_Job (Packet : in Ring_Packet);
 private
 entry Job_Internal (Job : in Job_Type; Job_Result : out Job_Type);
 end Server;

 Servers : array (Ring_Range) of Server;

(cont. on next page)

Student number:..

COMP2310 Second Semester Exam 2005 Page 25 of 28

task body Server is
 type Job_SetT is array (Job_Type'Range) of Boolean;
 Job_Set : Job_SetT := (others => False);
 Circulation_Complete : Boolean := False;
 Server_Id : Ring_Range;
 Current_Packet : Ring_Packet;

 function Processing (Job : in Job_Type) return Job_Type is (...)
 function Server_Available return Boolean is (...)

 begin
 accept Set_Server_Id (Id : in Ring_Range) do
 Server_Id := Id;
 end Set_Server_Id;
 loop
 select
 accept Job (New_Job : in Job_Type; Job_Result : out Job_Type) do
 Current_Packet := (Job => New_Job,
 Job_Result => Job_Type'First,
 Done => False);
 Job_Set (New_Job) := True;
 requeue Job_Internal;
 end Job;
 Servers(Server_Id + 1).Forward_Job (Current_Packet);
 or
 when Circulation_Complete =>
 accept Job_Internal (Job: in Job_Type; Job_Result: out Job_Type) do
 Job_Result := Current_Packet.Job_Result;
 Job_Set (Job) := False;
 end Job_Internal;
 Circulation_Complete := False;
 or
 when not Circulation_Complete =>
 accept Forward_Job (Packet : in Ring_Packet) do
 Current_Packet := Packet;
 end Forward_Job;
 Circulation_Complete := Job_Set (Current_Packet.Job);
 if not Current_Packet.Done
 and (Circulation_Complete or Server_Available) then
 Current_Packet.Job_Result := Processing (Current_Packet.Job);
 Current_Packet.Done := True;
 end if;
 if not Circulation_Complete then
 Servers(Server_Id + 1).Forward_Job (Current_Packet);
 end if;
 or
 terminate;
 end select;
 end loop;
 end Server;

begin
 for Id in Ring_Range loop Servers(Id).Set_Server_Id (Id); end loop;
end Processes_In_Ring;

Student number:..

COMP2310 Second Semester Exam 2005 Page 26 of 28

continuation of answer to question part

continuation of answer to question part

Student number:..

COMP2310 Second Semester Exam 2005 Page 27 of 28

continuation of answer to question part

continuation of answer to question part

Student number:..

COMP2310 Second Semester Exam 2005 Page 28 of 28

continuation of answer to question part

continuation of answer to question part

